Dynamical Entropy of Quantum Random Walks

Duncan Wright
University of South Carolina
Department of Mathematics

UNIVERSITY OF
SOUTHCAROLINA

Overview

- Dynamical Systems
- Quantum Random Walks
- Entropy
- Applications of Entropy in Classical Information Theory
- Quantum Dynamical Entropy
- Applications in Quantum Information Theory

Classical Dynamical Systems

$(\Omega, \Sigma, \mu, f)=$ A probability space with a function describing the time dependence of points in that space.

Frictionless Billiards

$$
H(p, q)=\frac{p^{2}}{2 m}+V(q), \text { where } V(q)= \begin{cases}0, & q \in \Omega \\ \infty, q \notin \Omega\end{cases}
$$

Source: https://en.wikipedia.org/wiki/Dynamical_billiards

Arnold Cat Map

Source: By Claudio Rocchini - Own Work (It's not proper Arnold's cat but my black cat, due copyright restrictions), CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1350710

Classical Random Walks as Dynamical Systems

Source: Wikipedia- Random Walk

Formalisms of Quantum Mechanics

Def: Hilbert Space

Complete, Inner Product Space

- Cauchy sequences converge
- Sesquilinear Map

$$
\begin{array}{ll}
& \langle\cdot, \cdot\rangle: H^{2} \rightarrow \mathbb{C} \\
\text { 1. } & \left\langle x, y_{1}\right\rangle=\overline{\left\langle y_{1}, x\right\rangle} \\
\text { 2. } & \left\langle a y_{1}+y_{2}, x\right\rangle=a\left\langle y_{1}, x\right\rangle+\left\langle y_{2}, x\right\rangle \\
\text { 3. } & 0 \leq\langle x, x\rangle=\|x\|^{2}
\end{array}
$$

Ex:

$$
\langle x, y\rangle=\sum_{i=1}^{n} \overline{x_{i}} y_{i}
$$

$$
0 \leq\langle x, x\rangle=\sum_{i=1}^{n}\left|x_{i}\right|^{2}
$$

Formalisms of Quantum Mechanics

Hilbert Space

Def: Linear Functionals

$$
\begin{array}{cc}
\langle y|: H \rightarrow \mathbb{C} \\
\text { "Bra" } & \text { "Ket" } \\
\langle y| & |x\rangle \\
\pi & \pi \\
H^{*}= & H \\
\langle y||x\rangle & =\langle y, x\rangle
\end{array}
$$

Ex: $\quad|x\rangle \in \mathbb{C}^{n}$

$$
\langle y| \in \mathbb{C}^{n}
$$

Formalisms of Quantum Mechanics

Hilbert Space
Linear Functionals
Def: Pure State

$$
\begin{aligned}
& T: H \rightarrow H \quad \operatorname{tr}(T)=1 \\
& |x\rangle\langle x| \quad \operatorname{tr}(|x\rangle\langle x|)=\langle x, x\rangle \\
& |x\rangle\langle x|=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)\left(\begin{array}{llll}
\overline{x_{1}} & \overline{x_{2}} & \cdots & \overline{x_{n}}
\end{array}\right) \\
& |x\rangle\langle x| \in M_{n}(\mathbb{C}) \\
& =\left(\begin{array}{ccc}
\left|x_{1}\right|^{2} & \cdots & x_{1} \overline{x_{n}} \\
\vdots & \ddots & \vdots \\
x_{n} \overline{x_{1}} & \cdots & \left|x_{n}\right|^{2}
\end{array}\right)
\end{aligned}
$$

From Classical to Quantum

Space:
\mathbb{Z}

$\ell_{2}(\mathbb{Z})$

Probability Distribution

State:
$\sum p_{i}=1$

$$
\text { Pure State }=|x\rangle\langle x|
$$

$$
\sum\left|x_{i}\right|^{2}=1
$$

Evolution: Transition Matrix \longrightarrow
Positive, Trace-Preserving
Operators

Evolution of a Quantum System

$$
\begin{aligned}
& \Theta(\rho)=\sum_{k} A_{k} \rho A_{k}^{*} \\
& \text { where } \sum_{k} A_{k}^{*} A_{k}=\mathbb{1}
\end{aligned}
$$

In particular,

$$
\Theta(|x\rangle\langle x|)=U|x\rangle\langle x| U^{*}=|U x\rangle\langle U x|
$$

Quantum Random Walk

Internal Degrees of Freedom: $H_{C}=\mathbb{C}^{2}$ with basis $\{|\uparrow\rangle,|\downarrow\rangle\}$

Position Space: $\quad H_{P}=\ell_{2}(\mathbb{Z})$

Where the Magic happens: $\quad H=\mathbb{C}^{2} \bigotimes \ell_{2}(\mathbb{Z})$
with basis elements $|\downarrow, n\rangle$ and $|\uparrow, n\rangle$

Quantum Random Walk

Coin Space:

$$
\begin{aligned}
& h=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& h|\uparrow\rangle=\frac{|\uparrow\rangle+|\downarrow\rangle}{\sqrt{2}}
\end{aligned}
$$

Gives equal probability to be in spin up or spin down.

$$
h \otimes \mathbb{1}_{P}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc|ccc}
\ddots & 0 & 0 & \ddots & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & \ddots & 0 & 0 & \ddots \\
\hdashline \ddots & 0 & 0 & \ddots & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & \ddots & 0 & 0 & \ddots
\end{array}\right)
$$

Quantum Random Walk

Shift Operator:

$$
S=\sum_{n \in \mathbb{Z}}|\uparrow, n+1\rangle\langle\uparrow, n|+|\downarrow, n-1\rangle\langle\downarrow, n|
$$

If particle is in spin up, S will shift it right. If particle is in spin down, S will shift it left.

$$
S=\left(\begin{array}{ccc|ccc}
\ddots & 0 & 0 & \ddots & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & \ddots & 0 & 0 & \ddots \\
\hline \ddots & 0 & 0 & \ddots & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & \ddots & 0 & 0 & \ddots
\end{array}\right)
$$

Quantum Random Walk

Unitary Operator:

$$
U=S\left(h \otimes \mathbb{1}_{p}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc|ccc}
\ddots & 0 & 0 & \ddots & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & \ddots & 0 & 1 & \ddots \\
\hline \ddots & 1 & 0 & \ddots & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & \ddots & 0 & 0 & \ddots
\end{array}\right)
$$

Now we have options for our initial state even after restricting it to be at the origin.

or

$$
|\downarrow, 0\rangle=\left(\begin{array}{c}
\vdots \\
0 \\
\vdots \\
\hline \vdots \\
1 \\
\vdots
\end{array}\right)
$$

Quantum Random Walk

Initial State: $|\uparrow, 0\rangle$

Source: Renato Portugal (2013): Quantum Walks and Seßarch Algorithms

Quantum Random Walk

Initial State: $\quad \frac{|\uparrow, 0\rangle+i|\downarrow, 0\rangle}{\sqrt{2}}$

Source: Renato Portugal (2013): Quantum Walks and Seßrch Algorithms

Universal for Quantum Computation

Source: Universal quantum computation using the discrete-time quantum walk, Lovett et. al.

Implementation in Linear Optics

Source: Experimental realization of a quantum quincunx by use of linear optical elements, Do et. al.

Entropy

We have a classical system whose macrostate is described by the probability measure

$$
p=\left(p_{1}, p_{2}, \ldots, p_{k}\right)
$$

After measuring the system N times, we expect to see:

- 1st microstate: $p_{1} N$ times
- 2nd microstate: $p_{2} N$ times
:
- k th microstate: $p_{k} N$ times

$$
\begin{gathered}
\frac{1}{N} \log \frac{N!}{\left(p_{1} N\right)!\left(p_{2} N\right)!\cdots\left(p_{k} N\right)!} \longrightarrow-\sum_{i=1}^{k} p_{i} \log p_{i} \\
H(X)=-\sum_{i=1}^{k} p_{i} \log p_{i}=\sum_{i=1}^{k} \eta\left(p_{i}\right)
\end{gathered}
$$

Entropy Rate

Stochastic Process: $\boldsymbol{X}=\left(X_{n}\right)_{n=1}^{\infty}$
Entropy Rate: $H(\boldsymbol{X})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

$$
=\lim _{n \rightarrow \infty} \sum_{i_{1}, i_{2}, \ldots, i_{n}}^{k} \eta\left(p_{i_{1}, i_{2}, \ldots, i_{n}}\right)
$$

Markov Process: $H(\boldsymbol{X})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

$$
=\sum_{i=1}^{k} p_{i} \sum_{j=1}^{k} \eta\left(p_{j \mid i}\right),
$$

where $p=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ is an invariant measure.
Unbiased Random Walk: $H=\sum_{i=1}^{k} \frac{1}{k} \sum_{j=1}^{k} \eta\left(p_{j \mid i}\right)$

$$
=\log 2
$$

SZ Quantum Dynamical Entropy

Dynamical System: (Schrödinger Picture)

$(\Theta, \mathrm{T}, \rho)$ where $\Theta(\cdot)=U \cdot U^{*}, \rho \in S_{1}(H)$ and $\mathrm{T}(A) \cdot=\sum_{i \in A} P_{i} \cdot P_{i}$.
Probabilities: $p_{i_{1}, i_{2}, \ldots, i_{n}}=\operatorname{tr}\left(\mathrm{T}\left(i_{n}\right) \circ \theta \circ \mathrm{T}\left(i_{n-1}\right) \circ \cdots \circ \theta \circ \mathrm{T}\left(i_{1}\right) \rho\right)$
SZ Dynamical Entropy: $h^{S z}(\Theta, \mathrm{~T}, \rho)=\limsup _{n \rightarrow \infty} \frac{1}{\mathrm{n}} \Sigma_{i \in \Omega} \eta\left(p_{i_{1}, i_{2}, \ldots, i_{n}}\right)$

Theorem 1. (Androulakis, Wright)

Let $\Theta=$ Hadamard walk on N-cycle $H_{C} \otimes H_{P}=\mathbb{C}^{2} \otimes \mathbb{C}^{N}$, and $\mathrm{T}=\left(P_{n}\right)_{n=1}^{N}$ with $P_{n}=\mathbb{1}_{C} \otimes|n\rangle\langle n|$, and $\rho=\mathbb{1} / 2 N$.

Then $h^{S Z}(\Theta, \mathrm{~T}, \rho)=\log 2$
and $\quad h^{S Z}\left(\Theta^{2}, \mathrm{~T}, \rho\right)=\frac{4}{3} \log 2$.

Nonlinear in time: In classical dynamical entropy we have

$$
n h^{K S}(f)=h^{K S}\left(f^{n}\right)
$$

AOW Quantum Dynamical Entropy

Dynamical System: (Heisenberg Picture)

$\left(\mathcal{A}, \Theta^{*}, \phi\right)$ where $\Theta^{*}(\cdot)=U^{*} \cdot U$ and $\phi \in S(\mathcal{A})$.
Quantum Markov Chains:
$\gamma=\left(P_{i}\right)_{i=1}^{d}, \mathbb{E}: M_{d} \otimes \mathcal{A} \rightarrow \mathcal{A}$ defined by $\mathbb{E}\left(\sum_{i, j=1}^{d}|i\rangle\langle j| A_{i, j}\right)=\Theta^{*}\left(\sum_{i=1}^{d} P_{i} A_{i, i} P_{i}\right)$
The Markov state $\phi_{\infty} \in S\left(M_{d}^{\otimes N}\right)$ is given by

$$
\phi_{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)=\phi\left(\mathbb{E}\left(a_{1} \otimes \mathbb{E}\left(a_{2} \otimes \cdots \mathbb{E}\left(a_{n-1} \otimes \mathbb{E}\left(a_{n} \otimes 1_{\mathcal{A}}\right) \cdots\right)\right)\right)\right)
$$

Let $\rho_{n} \in M_{d}^{\otimes n}$ satisfy $\phi_{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)=\operatorname{tr}\left(\rho_{n} \mathbb{E}\left(a_{1} \otimes \cdots \mathbb{E}\left(a_{n} \otimes 1_{\mathcal{A}}\right) \cdots\right)\right)$
AOW Dynamical Entropy: $h^{\text {AoW }}\left(\Theta^{*}, \gamma, \phi\right)=\limsup _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \mathrm{S}\left(\rho_{n}\right)$ where $S(\rho)=\operatorname{tr}(\eta(\rho))$ is the von Neumann entropy.

SZ=AOW Dynamical Entropy

Theorem 2. (Androulakis, Wright)
Given a dynamical system

$$
\begin{gathered}
(\Theta, \mathrm{T}, \rho) \quad \text { or } \quad\left(\mathcal{A}, \Theta^{*}, \phi\right) \\
h^{S Z}(\Theta, \mathrm{~T}, \rho)= \\
h^{A O W}\left(\Theta^{*}, \gamma, \phi\right)
\end{gathered}
$$

Proof. $p_{i_{1}, i_{2}, \ldots, i_{n}}=\operatorname{tr}\left(\mathrm{T}\left(i_{n}\right) \circ \Theta \circ \mathrm{T}\left(i_{n-1}\right) \circ \cdots \circ \Theta \circ \mathrm{T}\left(i_{1}\right) \rho\right)$

$$
\begin{aligned}
&= \operatorname{tr}\left(\mathrm{T}\left(i_{n-1}\right) \circ \Theta \circ \mathrm{T}\left(i_{n-2}\right) \circ \cdots \circ \Theta \circ \mathrm{T}\left(i_{1}\right) \rho \mathbb{E}\left(E_{i_{n}, i_{n}} \otimes 1_{\mathcal{A}}\right)\right) \\
& \vdots \\
&= \operatorname{tr}\left(\mathrm{T}\left(i_{1}\right) \rho \mathbb{E}\left(E_{i_{2}, i_{2}} \otimes \mathbb{E}\left(\cdots \mathbb{E}\left(E_{i_{n}, i_{n}} \otimes 1_{\mathcal{A}}\right)\right)\right)\right) \\
&=\operatorname{tr}\left(\rho \mathbb{E}\left(E_{i_{1}, i_{1}} \otimes \mathbb{E}\left(E_{i_{2}, i_{2}} \otimes \mathbb{E}\left(\cdots \mathbb{E}\left(E_{i_{n}, i_{n}} \otimes 1_{\mathcal{A}}\right)\right)\right)\right)\right. \\
&= \rho_{n}\left(i_{1}, i_{2}, \ldots, i_{n} ; i_{1}, i_{2}, \ldots, i_{n}\right)
\end{aligned}
$$

Compressability of Data

$$
\text { OBJECTS }=S \xrightarrow{C} \text { CODEWORDS } \subset A^{+}=\cup_{\ell=0}^{\infty}\{0,1\}^{n}
$$

The Source Code C is uniquely decodable if its extension $C^{+}: S^{+} \rightarrow A^{+}$

$$
C^{+}\left(x_{1} x_{2} \cdots x_{n}\right)=C\left(x_{1}\right) C\left(x_{2}\right) \cdots C\left(x_{n}\right)
$$

is one-to-one, for all n.

Kraft-McMillan Inequality.

Any uniquely decodable code with codeword lengths $\ell_{1}, \ell_{2}, \ldots, \ell_{n}$ must satisfy the inequality $\quad \sum_{i=1}^{n} 2^{-\ell_{i}} \leq 1$.
Conversely, given lengths that satisfy the above inequality there exists a uniquely decodable code with those lengths.

Optimal Lossless Codes

Shannon's Noiseless Coding Theorem.

Given a random variable X, the optimal source code C satisfies the inequality

$$
H(X) \leq L(C)<H(X)+1,
$$

where $L(C)=\mathbb{E}[\ell(x)]=\sum_{x \in S} p(x) \ell(x)$ is the expected length of C.

Corollary.

Given a stochastic process $\boldsymbol{X}=\left(X_{n}\right)_{n=1}^{\infty}$, the optimal source code C_{n} for the strings of length n satisfies the inequality

$$
H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \leq L\left(C_{n}\right)<H\left(X_{1}, X_{2}, \ldots, X_{n}\right)+1 .
$$

Therefore average expected length per symbol $L_{n}^{*}=\frac{1}{n} L\left(C_{n}\right)$ is given by

$$
H(\boldsymbol{X})=\lim _{n \rightarrow \infty} \frac{1}{n} H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\lim _{n \rightarrow \infty} L_{n}^{*}=: L^{*} .
$$

In particular, if \boldsymbol{X} has i.i.d. copies of a random variable X, then

$$
H(\boldsymbol{X})=L^{*}=H(X) .
$$

Compressing Quantum Data

OBJECTS $=\mathcal{S} \subset H_{\mathcal{S}} \xrightarrow{U}$ CODEWORDS $\subset H_{\mathcal{A}}^{\oplus}=\oplus_{\ell=0}^{\infty} H_{\mathcal{A}}^{\otimes n}$
where $\mathcal{S}=\left\{p_{n},\left|s_{n}\right\rangle\right\}_{n=1}^{N}$ is an ensemble of states in $H_{\mathcal{S}}=\operatorname{span}\left\{\left|s_{n}\right\rangle\right\}=\mathbb{C}^{d}$ and $H_{\mathcal{A}}=\mathbb{C}^{2}=\operatorname{span}\{|0\rangle,|1\rangle\}$.
The Quantum Source Code U is uniquely decodable if its extension $U^{+}: H_{\mathcal{S}}^{\oplus} \rightarrow H_{\mathcal{A}}^{\oplus}$

$$
U^{+}\left(x_{1} x_{2} \cdots x_{n}\right)=U\left(x_{1}\right) U\left(x_{2}\right) \cdots U\left(x_{n}\right)
$$

is a linear isometry, for all n.
We define the length observable $\Lambda \in B\left(H_{\mathcal{A}}^{\oplus}\right)$ by

$$
\Lambda:=\sum_{\ell=0}^{\ell_{\max }} \ell \Pi_{\ell}
$$

where Π_{ℓ} is the orthogonal projection onto the subspace $H_{\mathcal{A}}^{\otimes \ell} \subset H_{\mathcal{A}}^{\oplus}$. The quantum codeword length of $|\omega\rangle \equiv U|s\rangle$ for each $|s\rangle \in H_{\mathcal{S}}$ is given by

$$
\ell(|\omega\rangle) \equiv\langle\omega| \Lambda|\omega\rangle .
$$

Quantum from Classical

Let $C: S \rightarrow A^{+}$be a classical uniquely decodable code with $|S|=\operatorname{dim}\left(H_{S}\right)$. Then for any orthonormal basis $\left\{\left|e_{i}\right\rangle\right\}_{i=1}^{d}$ of $H_{\mathcal{S}}$,

$$
U=\sum_{i=1}^{d}\left|C\left(x_{i}\right)\right\rangle\left\langle e_{i}\right|
$$

is uniquely decodable. Furthermore, the quantum codeword lengths for $|\omega\rangle \equiv U|s\rangle$ are given by

$$
\ell(|\omega\rangle) \equiv\langle\omega| \Lambda|\omega\rangle=\sum_{i=1}^{d}\left|\left\langle e_{i} \mid s\right\rangle\right|^{2} \ell_{i} .
$$

Theorem 3. (Quantum Kraft-McMillan Inequality)

Any uniquely decodable code U must satisfy the inequality

$$
\operatorname{tr}\left(U^{\dagger} 2^{-\Lambda} U\right) \leq 1
$$

Conversely, if $U: H_{\mathcal{S}} \rightarrow H_{\mathcal{A}}^{\oplus}$ is a linear isometry with length eigenstates satisfying the above inequality, then there exists a uniquely decodable quantum code (of the above form) with the same number of length ℓ eigenstates, for each $\ell \in \mathbb{N}$.

Optimal Quantum Lossless Codes

$$
\text { Let } \mathcal{S}=\left\{p_{n},\left|s_{n}\right\rangle\right\}_{n=1}^{N} \text { and } \rho=\sum_{n=1}^{N} p_{n}\left|s_{n}\right\rangle\left\langle s_{n}\right| \text {. }
$$

Suppose ρ has spectral decomposition

$$
\rho=\sum_{i=1}^{d} \rho_{i}\left|\rho_{i}\right\rangle\left\langle\rho_{i}\right| .
$$

Theorem 4. (Bellomo, Bosyk, Holik, Zozor 2017)
The optimal classical-quantum source code is given by

$$
U=\sum_{i=1}^{d}|c(i)\rangle\left\langle\rho_{i}\right|
$$

where $\{c(i)\}$ is the classical Huffman code for the probabilities $\left\{\rho_{i}\right\}$.

Optimal Quantum Lossless Codes

Theorem 5. (Bellomo, Bosyk, Holik, Zozor 2017)

The average length of the optimal quantum source code satisfies the inequalities

$$
\begin{aligned}
S(\rho) & \leq \ell(\Gamma(\rho))<S(\rho)+1, \\
\Gamma(\cdot) & =U \cdot U^{\dagger} \text { and } \ell(\Gamma(\rho))=\operatorname{tr}(\Gamma(\rho) \Lambda) .
\end{aligned}
$$

Corollary.

The average length of the optimal quantum source code for the i.i.d. ensemble $\mathcal{S}^{\otimes n}$ satisfies the inequalities

$$
n S(\rho)=S\left(\rho^{\otimes n}\right) \leq \ell\left(\Gamma_{\mathrm{n}}\left(\rho^{\otimes n}\right)\right)<S\left(\rho^{\otimes n}\right)+1=n S(\rho)+1 .
$$

Therefore $\lim _{n \rightarrow \infty} \frac{1}{n} \ell\left(\Gamma_{n}\left(\rho^{\otimes n}\right)\right)=S(\rho)=h^{A O W}\left(\Theta^{*}, \gamma, \phi\right)$, where $\gamma=\left(\left|\rho_{i}\right\rangle\left\langle\rho_{i}\right|\right)_{i=1}^{d}$,
Θ^{*} is the Bernoulli shift on $M_{d}^{\otimes \mathbb{N}}$ and $\phi\left(a_{1} a_{2} \cdots a_{n}\right)=\operatorname{tr}\left(\rho^{\otimes n} \mathbb{E}\left(a_{1} \otimes \cdots \mathbb{E}\left(a_{n} \otimes 1_{\mathcal{A}}\right) \cdots\right)\right)$.
Open Question. Can the above result relating the average length per symbol be extended to include a stochastic ensemble $\mathcal{S}^{k}=\left\{p_{n_{1}, \ldots, n_{k}},\left|s_{1} s_{2} \cdots s_{k}\right\rangle\right\}_{n_{1}, \ldots, n_{k}=1}^{N}$?

Optical Communication Process

Where

$$
\alpha(\rho)=\rho \otimes v
$$

for some noise v coming from the noisy channel and

$$
\beta(\varphi)=\operatorname{tr}_{K}(\varphi)
$$

Optical Communication Process

Example.

Where $\Theta(\cdot)=U \cdot U^{\dagger}$ is the Hadamard walk on the N -cycle given by the unitary $U=S\left(1_{P} \otimes h\right), \alpha(\rho)=\rho \otimes v$ where $\mathrm{h} v=v$, and $\beta(\varphi)=\operatorname{tr}_{H_{C}}(\varphi)$.
Letting $\rho=1_{P} / N, \mathrm{~T}_{1}=\left(P_{n}\right)_{n=1}^{N}$ where $P_{n}=|n\rangle\langle n|$, and $\mathrm{T}_{2}=\left(Q_{n}\right)_{n=1}^{N}$ where $Q_{n}=|n\rangle\langle n| \otimes 1_{C}$, we find that

$$
h^{S Z}\left(\Lambda, \mathrm{~T}_{1}, \rho\right) \neq h^{S Z}\left(\Theta, \mathrm{~T}_{2}, \rho \otimes v\right)
$$

Thank you!

