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Classical Dynamical Systems

Ω, Σ, 𝜇, 𝑓 = A probability space with a function describing 
the time dependence of points in that space.

𝐻 𝑝, 𝑞 =
𝑝2

2𝑚
+ 𝑉 𝑞 , where 𝑉 𝑞 =  

0, 𝑞 ∈ Ω
∞, 𝑞 ∉ Ω

Frictionless Billiards

Source: https://en.wikipedia.org/wiki/Dynamical_billiards



Arnold Cat Map

Source: By Claudio Rocchini - Own Work (It's not proper Arnold's cat but my black cat, due copyright restrictions), 
CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1350710



Classical Random Walks
as Dynamical Systems

Transition Matrix: Initial State:Space:

ℤ

Dynamics:Space:

ℤℕ 𝑓 𝑥 = 𝑦, where 𝑦𝑛 = 𝑥𝑛+1
for all 𝑛 ∈ ℕ

Source: Wikipedia- Random Walk 



Formalisms of Quantum Mechanics

Hilbert SpaceDef:

Complete, Inner Product Space

• Cauchy sequences converge

• Sesquilinear Map

1. 

2.

3.

Ex:



Formalisms of Quantum Mechanics

Hilbert Space

Linear FunctionalsDef:

“Bra”     “Ket”

=

=

Ex:



Formalisms of Quantum Mechanics

Hilbert Space Ex:

Linear Functionals

StatePureDef:



From Classical to Quantum

Pure State =

State:

Probability Distribution

Evolution: Transition Matrix
Positive, Trace-Preserving

Operators

Space: ℓ2(ℤ)ℤ



Evolution of a Quantum System

In particular,

where



Quantum Random Walk

Internal Degrees of Freedom: with basis𝐻𝐶=

Position Space: 𝐻𝑃= ℓ2(ℤ)

Where the Magic happens: 𝐻= ℂ2 ⊗ℓ2 ℤ

with basis elements and



Quantum Random Walk
Coin Space:

Gives equal probability to be in spin up or spin down.



Quantum Random Walk
Shift Operator:

If particle is in spin up, S will shift it right.
If particle is in spin down, S will shift it left.



Quantum Random Walk
Unitary Operator:

Now we have options for our initial state even after restricting it to be at the origin.

or



Quantum Random Walk

Initial State:

Source:  Renato Portugal (2013): Quantum Walks and Search Algorithms



Quantum Random Walk

Initial State:

Source:  Renato Portugal (2013): Quantum Walks and Search Algorithms



Universal for Quantum Computation

Source: Universal quantum computation using the discrete-time quantum walk, Lovett et. al.



Implementation in Linear Optics

Source: Experimental realization of a quantum quincunx by use of linear optical elements, Do et. al.



Entropy
We have a classical system whose macrostate is described by the probability measure 

𝑝 = 𝑝1, 𝑝2, … , 𝑝𝑘 .

After measuring the system 𝑁 times, we expect to see: 

• 1st microstate:   𝑝1𝑁 times

• 2nd microstate:   𝑝2𝑁 times

• 𝑘th microstate:   𝑝𝑘𝑁 times

•
•
•

1

𝑁
log

𝑁!

𝑝1𝑁 ! 𝑝2𝑁 !⋯(𝑝𝑘𝑁)! 𝑁 → ∞
− 

𝑖=1

𝑘

𝑝𝑖 log 𝑝𝑖

𝐻 𝑋 = − 

𝑖=1

𝑘

𝑝𝑖 log 𝑝𝑖 =  

𝑖=1

𝑘

𝜂(𝑝𝑖)



Entropy Rate

Stochastic Process: 𝑿 = (𝑋𝑛)𝑛=1
∞

Entropy Rate: 𝐻 𝑿 = lim
𝑛→∞

1

𝑛
𝐻(𝑋1, 𝑋2, … , 𝑋𝑛)

= lim
𝑛→∞

 𝑖1,𝑖2,…,𝑖𝑛
𝑘 𝜂(𝑝𝑖1,𝑖2,…,𝑖𝑛)

Markov Process: 𝐻 𝑿 = lim
𝑛→∞

1

𝑛
𝐻(𝑋1, 𝑋2, … , 𝑋𝑛)

=  𝑖=1
𝑘 𝑝𝑖  𝑗=1

𝑘 𝜂(𝑝𝑗|𝑖), 

where 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑘) is an invariant measure. 

Unbiased Random Walk: 𝐻 =  𝑖=1
𝑘 1

𝑘
 𝑗=1
𝑘 𝜂(𝑝𝑗|𝑖)

= log 2



SZ Quantum Dynamical Entropy

Dynamical System: (Schrödinger Picture)
(Θ, Τ, 𝜌) where Θ ⋅ = 𝑈 ⋅ 𝑈∗, 𝜌 ∈ 𝑆1 𝐻 and Τ 𝐴 ⋅=  𝑖∈𝐴𝑃𝑖 ⋅ 𝑃𝑖 .

Probabilities: 𝑝𝑖1,𝑖2,…,𝑖𝑛 = tr(Τ 𝑖𝑛 ∘ Θ ∘ Τ 𝑖𝑛−1 ∘ ⋯∘ Θ ∘ Τ 𝑖1 𝜌)

SZ Dynamical Entropy: ℎ𝑆𝑍 Θ, Τ, 𝜌 = limsup𝑛→∞
1

n
 𝑖∈Ω𝜂( 𝑝𝑖1,𝑖2,…,𝑖𝑛)

⟹
Nonlinear in time: In classical dynamical entropy 
we have

𝑛ℎ𝐾𝑆 𝑓 = ℎ𝐾𝑆 𝑓𝑛 .

Theorem 1. (Androulakis, Wright)
Θ = Hadamard walk on N-cycle HC ⊗𝐻𝑃 = ℂ2 ⊗ℂ𝑁,
Τ = 𝑃𝑛 𝑛=1

𝑁 with 𝑃𝑛 = ,  and 𝜌 = .
Let
and 

ℎ𝑆𝑍 Θ, Τ, 𝜌 = log 2Then

ℎ𝑆𝑍 Θ2, Τ, 𝜌 =
4

3
log 2and                                             .



AOW Quantum Dynamical Entropy

Dynamical System: (Heisenberg Picture)
(𝒜, Θ∗, 𝜙) where Θ∗ ⋅ = 𝑈∗ ⋅ 𝑈 and 𝜙 ∈ 𝑆 𝒜 .

Quantum Markov Chains: 
𝛾 = 𝑃𝑖 𝑖=1

𝑑 , 𝔼:𝑀𝑑 ⊗𝒜 → 𝒜 defined by 

The Markov state 𝜙∞ ∈ 𝑆(𝑀𝑑
⊗ℕ) is given by 

𝜙∞ 𝑎1𝑎2⋯𝑎𝑛 = 𝜙(𝔼 𝑎1 ⊗𝔼 𝑎2 ⊗⋯𝔼 𝑎𝑛−1 ⊗𝔼 𝑎𝑛 ⊗1𝒜 ⋯ )

Let 𝜌𝑛 ∈ 𝑀𝑑
⊗𝑛 satisfy 𝜙∞ 𝑎1𝑎2⋯𝑎𝑛 = tr 𝜌𝑛𝔼 𝑎1 ⊗⋯𝔼 𝑎𝑛 ⊗1𝒜 ⋯

AOW Dynamical Entropy: ℎ𝐴𝑂𝑊 Θ∗, 𝛾, 𝜙 = limsupn→∞
1

n
S 𝜌𝑛

where 𝑆 𝜌 = tr(𝜂 𝜌 ) is the von Neumann entropy. 



SZ=AOW Dynamical Entropy

Theorem 2. (Androulakis, Wright)

(Θ, Τ, 𝜌) (𝒜, Θ∗, 𝜙)
Given a dynamical system 

or                                       ,

ℎ𝑆𝑍 Θ, Τ, 𝜌 = ℎ𝐴𝑂𝑊(Θ∗, 𝛾, 𝜙) .

Proof. 𝑝𝑖1,𝑖2,…,𝑖𝑛 =   tr(Τ 𝑖𝑛 ∘ Θ ∘ Τ 𝑖𝑛−1 ∘ ⋯ ∘ Θ ∘ Τ 𝑖1 𝜌)

=   tr Τ 𝑖𝑛−1 ∘ Θ ∘ Τ 𝑖𝑛−2 ∘ ⋯ ∘ Θ ∘ Τ 𝑖1 𝜌𝔼 𝐸𝑖𝑛,𝑖𝑛 ⊗1𝒜

=    tr Τ 𝑖1 𝜌𝔼(𝐸𝑖2,𝑖2 ⊗𝔼 ⋯𝔼 𝐸𝑖𝑛,𝑖𝑛 ⊗1𝒜 )

=    tr 𝜌𝔼(𝐸𝑖1,𝑖1 ⊗𝔼(𝐸𝑖2,𝑖2 ⊗𝔼 ⋯𝔼 𝐸𝑖𝑛,𝑖𝑛 ⊗1𝒜) )

=    𝜌𝑛(𝑖1, 𝑖2, … , 𝑖𝑛; 𝑖1, 𝑖2, … , 𝑖𝑛)



Compressability of Data

OBJECTS   = 𝑆 CODEWORDS   ⊂ 𝐴+ =∪ℓ=0
∞ {0,1}𝑛

𝐶

The Source Code C is uniquely decodable if its extension 𝐶+: 𝑆+ → 𝐴+

𝐶+ 𝑥1𝑥2⋯𝑥𝑛 = 𝐶 𝑥1 𝐶 𝑥2 ⋯𝐶 𝑥𝑛

is one-to-one, for all n.

Kraft-McMillan Inequality.
Any uniquely decodable code with codeword lengths ℓ1, ℓ2, … , ℓ𝑛 must satisfy 

the inequality                                  𝑖=1
𝑛 2−ℓ𝑖 ≤ 1.

Conversely, given lengths that satisfy the above inequality there exists a uniquely 
decodable code with those lengths.



Optimal Lossless Codes

Shannon’s Noiseless Coding Theorem.
Given a random variable 𝑋, the optimal source code 𝐶 satisfies the inequality

where 𝐿 𝐶 = 𝔼 ℓ 𝑥 =  𝑥∈𝑆 𝑝 𝑥 ℓ(𝑥) is the expected length of 𝐶.

𝐻 𝑋 ≤ 𝐿 𝐶 < 𝐻 𝑋 + 1,

Corollary.
Given a stochastic process 𝑿 = 𝑋𝑛 𝑛=1

∞ , the optimal source code 𝐶𝑛 for the strings of 
length 𝑛 satisfies the inequality

𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 ≤ 𝐿 𝐶𝑛 < 𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 + 1.

Therefore average expected length per symbol 𝐿𝑛
∗ =

1

𝑛
𝐿(𝐶𝑛) is given by 

𝐻 𝑿 = lim
𝑛→∞

1

𝑛
𝐻(𝑋1, 𝑋2, … , 𝑋𝑛) = lim

𝑛→∞
𝐿𝑛
∗ =: 𝐿∗.

In particular, if X has i.i.d. copies of a random variable X, then 

𝐻 𝑿 = 𝐿∗ = 𝐻 𝑋 .



Compressing Quantum Data

OBJECTS   = 𝒮 ⊂ 𝐻𝒮

where 𝒮 = is an ensemble of states in 𝐻𝒮 = span{ } = ℂ𝑑

and 𝐻𝒜 = ℂ2 = span .

CODEWORDS   ⊂ 𝐻𝒜
⊕ = ⊕ℓ=0

∞ 𝐻𝒜
⊗𝑛𝑈

The Quantum Source Code U is uniquely decodable if its extension 𝑈+: 𝐻𝒮
⊕ → 𝐻𝒜

⊕

𝑈+ 𝑥1𝑥2⋯𝑥𝑛 = 𝑈 𝑥1 𝑈 𝑥2 ⋯𝑈 𝑥𝑛

is a linear isometry, for all n.

We define the length observable Λ ∈ 𝐵(𝐻𝒜
⊕) by 

Λ ≔  

ℓ=0

ℓmax

ℓΠℓ

where Πℓ is the orthogonal projection onto the subspace 𝐻𝒜
⊗ℓ ⊂ 𝐻𝒜

⊕. 
The quantum codeword length of                  for each     ∈ 𝐻𝒮 is given by 

.



Quantum from Classical
Let 𝐶: 𝑆 → 𝐴+ be a classical uniquely decodable code with 𝑆 = dim 𝐻𝒮 . Then 
for any orthonormal basis                  of 𝐻𝒮 ,

is uniquely decodable. Furthermore, the quantum codeword lengths for 

are given by 

Theorem 3. (Quantum Kraft-McMillan Inequality)
Any uniquely decodable code 𝑈 must satisfy the inequality

Conversely, if 𝑈:𝐻𝒮 → 𝐻𝒜
⊕ is a linear isometry with length eigenstates satisfying the

above inequality, then there exists a uniquely decodable quantum code (of the above 
form) with the same number of length ℓ eigenstates, for each ℓ ∈ ℕ.



Optimal Quantum Lossless Codes

Let 𝒮 = and 𝜌 = .

Suppose 𝜌 has spectral decomposition

𝜌 = .

Theorem 4. (Bellomo, Bosyk, Holik, Zozor 2017)

The optimal classical-quantum source code is given by

𝑈 =

where {𝑐(𝑖)} is the classical Huffman code for the probabilities {𝜌𝑖}.



Optimal Quantum Lossless Codes

Theorem 5. (Bellomo, Bosyk, Holik, Zozor 2017)

The average length of the optimal quantum source code satisfies the inequalities

Γ ⋅ = 𝑈 ⋅ 𝑈† and ℓ Γ 𝜌 = tr(Γ 𝜌 Λ).

𝑆 𝜌 ≤ ℓ Γ 𝜌 < 𝑆 𝜌 + 1,

Corollary. 

The average length of the optimal quantum source code for the i.i.d. ensemble 𝒮⊗𝑛

satisfies the inequalities

𝑛𝑆 𝜌 = 𝑆 𝜌⊗𝑛 ≤ ℓ Γn 𝜌⊗𝑛 < 𝑆 𝜌⊗𝑛 + 1 = 𝑛𝑆 𝜌 + 1.

Therefore lim
𝑛→∞

1

𝑛
ℓ Γ𝑛 𝜌⊗𝑛 = 𝑆 𝜌 = ℎ𝐴𝑂𝑊 Θ∗, 𝛾, 𝜙 , where 𝛾 = 𝑖=1

𝑑 , 

Θ∗ is the Bernoulli shift on 𝑀𝑑
⊗ℕ and 𝜙 𝑎1𝑎2⋯𝑎𝑛 = tr 𝜌⊗𝑛𝔼 𝑎1 ⊗⋯𝔼 𝑎𝑛 ⊗1𝒜 ⋯ .

Open Question. Can the above result relating the average length per symbol be 

extended to include a stochastic ensemble 𝒮𝑘 = ? 



Optical Communication Process

ALICE

𝜌 ∈ 𝑆1(𝐻)

BOB

𝑆1(𝐻)
Λ

𝑆1(𝐻 ⊗𝐾) 𝑆1(𝐻 ⊗𝐾)
Θ

𝛼 𝛽

Where 𝛼 𝜌 = 𝜌⊗ 𝜈

for some noise 𝜈 coming from the noisy channel and

𝛽 𝜑 = tr𝐾 𝜑 .



Optical Communication Process

ALICE

𝜌 ∈ 𝑆1(𝐻𝑃)

BOB

𝑆1(𝐻𝑃)
Λ

𝑆1(𝐻𝑃 ⊗𝐻𝐶) 𝑆1(𝐻𝑃 ⊗𝐻𝐶)
Θ

𝛼 𝛽

Where Θ ⋅ = 𝑈 ⋅ 𝑈† is the Hadamard walk on the N-cycle given by the unitary 
𝑈 = 𝑆 1𝑃 ⊗ℎ , 𝛼 𝜌 = 𝜌⊗ 𝜈 where h𝜈 = 𝜈, and 𝛽 𝜑 = tr𝐻𝐶

𝜑 .

Example.

ℎ𝑆𝑍 Λ, Τ1, 𝜌 ≠ ℎ𝑆𝑍 Θ, Τ2, 𝜌 ⊗ 𝜈 .

Letting 𝜌 = 1𝑃/N, Τ1 = 𝑃𝑛 𝑛=1
𝑁 where 𝑃𝑛 = , and Τ2 = 𝑄𝑛 𝑛=1

𝑁 where 
𝑄𝑛 = ⊗ 1𝐶 , we find that          



Thank you!


