Dynamical Entropy of Quantum Random Walks

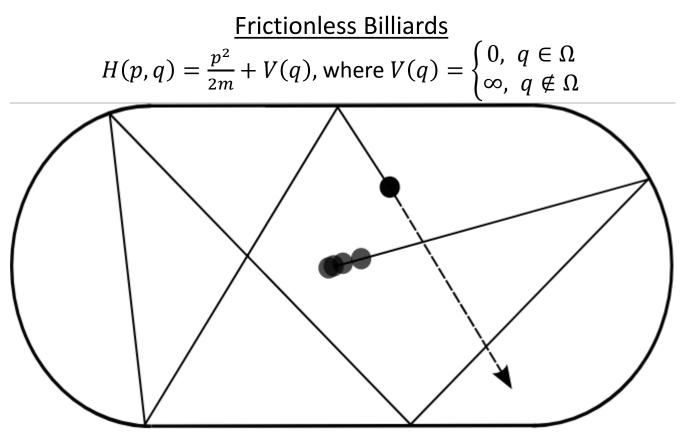
Duncan Wright University of South Carolina Department of Mathematics

Overview

- Dynamical Systems
- Quantum Random Walks
- Entropy
- Applications of Entropy in Classical Information Theory
- Quantum Dynamical Entropy
- Applications in Quantum Information Theory

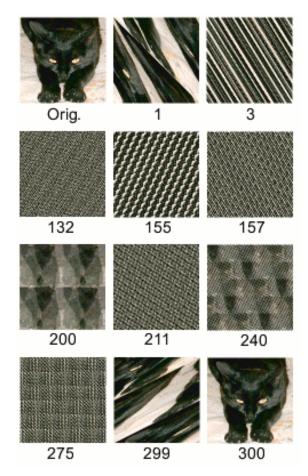
Classical Dynamical Systems

 $(\Omega, \Sigma, \mu, f) = A$ probability space with a function describing the time dependence of points in that space.



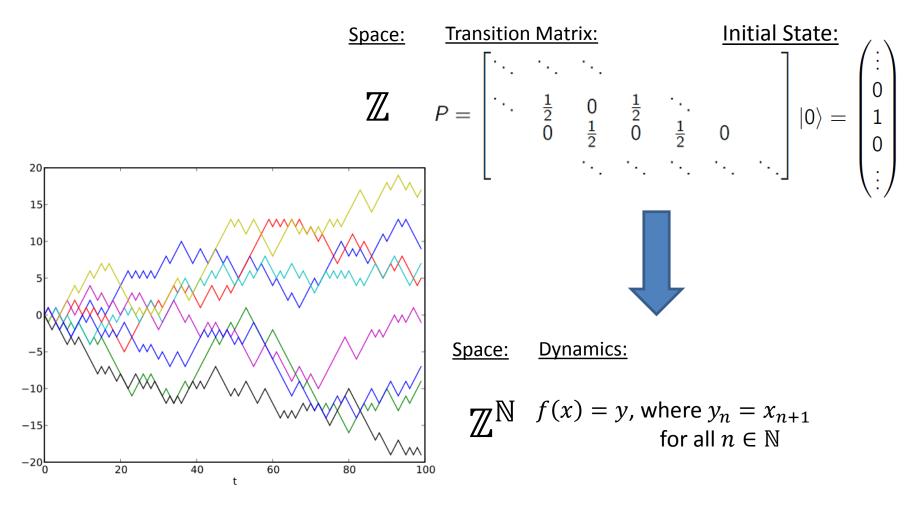
Source: https://en.wikipedia.org/wiki/Dynamical_billiards

Arnold Cat Map



Source: By Claudio Rocchini - Own Work (It's not proper Arnold's cat but my black cat, due copyright restrictions), CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=1350710

Classical Random Walks as Dynamical Systems



Formalisms of Quantum Mechanics

Def: Hilbert Space

Complete, Inner Product Space

- Cauchy sequences converge
- Sesquilinear Map

$$\langle \cdot, \cdot \rangle : H^2 \to \mathbb{C}$$

1.
$$\langle x, y_1 \rangle = \overline{\langle y_1, x \rangle}$$

2. $\langle ay_1 + y_2, x \rangle = a \langle y_1, x \rangle + \langle y_2, x \rangle$
3. $0 \le \langle x, x \rangle = \|x\|^2$

Ex:

$$\langle x, y \rangle = \sum_{i=1}^{n} \overline{x_i} y_i$$

$$0 \le \langle x, x \rangle = \sum_{i=1}^{n} |x_i|^2$$

Formalisms of Quantum Mechanics

Hilbert SpaceDef: Linear Functionals $\langle y | : H \rightarrow \mathbb{C}$ "Bra" "Ket" $\langle y | \quad |x \rangle$ $\cap \quad \cap$ $H^* = H$

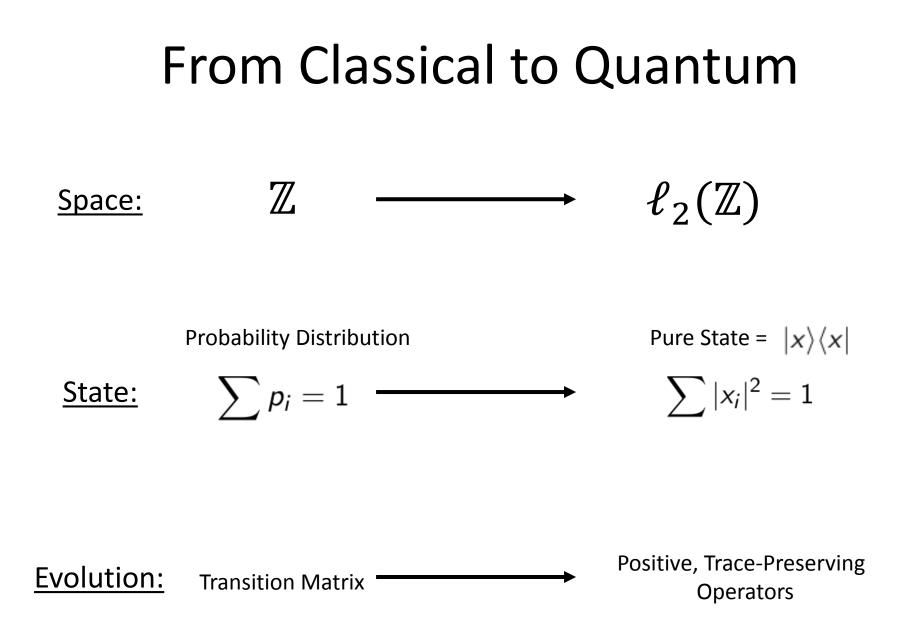
$$\langle y | | x \rangle = \langle y, x \rangle$$

Ex:
$$|x\rangle \in \mathbb{C}^n$$

 $\langle y| \in \mathbb{C}^n$

Formalisms of Quantum Mechanics

<u>Hilbert Space</u> Linear Functionals	Ex: $ x\rangle \in \mathbb{C}^n$ $\langle y \in \mathbb{C}^n$
Def: Pure State	$\langle y \in \mathbb{C}^{n}$
$T: H \rightarrow H$ $tr(T) = 1$	$ x\rangle\langle x \in M_n(\mathbb{C})$
$ x\rangle\langle x $ $tr(x\rangle\langle x) = \langle x,x\rangle$	
$ x\rangle\langle x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} (\overline{x_1} \ \overline{x_2} \ \cdots \ \overline{x_n})$	$= \begin{pmatrix} x_1 ^2 & \cdots & x_1 \overline{x_n} \\ \vdots & \ddots & \vdots \\ x_n \overline{x_1} & \cdots & x_n ^2 \end{pmatrix}$



Evolution of a Quantum System

$$\Theta(\rho) = \sum_{k} A_k \rho A_k^*$$

where

$$\sum_{k} A_{k}^{*}A_{k} = \mathbb{1}$$

In particular,

$$\Theta(|x\rangle\langle x|) = U|x\rangle\langle x|U^* = |Ux\rangle\langle Ux|$$

Internal Degrees of Freedom:
$$H_C = \mathbb{C}^2$$
 with basis $\{|\uparrow\rangle, |\downarrow\rangle\}$

Position Space:
$$H_P = \ell_2(\mathbb{Z})$$

Where the Magic happens:
$$H = \mathbb{C}^2 \bigotimes \ell_2(\mathbb{Z})$$

with basis elements
$$|\downarrow,n
angle$$
 and $|\uparrow,n
angle$

Coin Space:

$$h = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$
$$h|\uparrow\rangle = \frac{|\uparrow\rangle + |\downarrow\rangle}{\sqrt{2}}$$

Gives equal probability to be in spin up or spin down.

$$h \otimes \mathbb{1}_{P} = \frac{1}{\sqrt{2}} \begin{pmatrix} \ddots & 0 & 0 & \ddots & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ \frac{0 & 0 & \ddots & 0 & 0 & \ddots \\ \ddots & 0 & 0 & \ddots & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & \ddots & 0 & 0 & \ddots \end{pmatrix}$$

Shift Operator:

$$S = \sum_{n \in \mathbb{Z}} |\uparrow, n+1
angle \langle \uparrow, n| + |\downarrow, n-1
angle \langle \downarrow, n|$$

If particle is in spin up, S will shift it right. If particle is in spin down, S will shift it left.

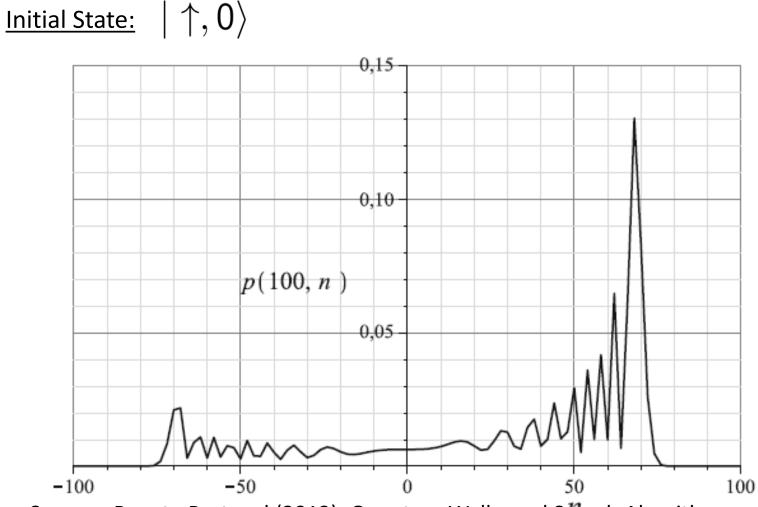
$$S = \begin{pmatrix} \ddots & 0 & 0 & \ddots & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & \ddots & 0 & 0 & \ddots \\ \ddots & 0 & 0 & \ddots & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & \ddots & 0 & 0 & \ddots \end{pmatrix}$$

Unitary Operator:

$$U = S(h \otimes \mathbb{1}_p) = \frac{1}{\sqrt{2}} \begin{pmatrix} \ddots & 0 & 0 & \ddots & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & \ddots & 0 & 1 & \ddots \\ \ddots & 1 & 0 & \ddots & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & \ddots & 0 & 0 & \ddots \end{pmatrix}$$

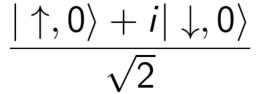
Now we have options for our initial state even after restricting it to be at the origin.

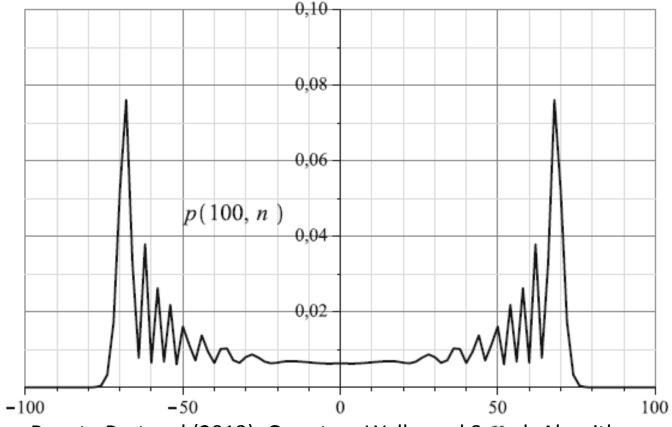
$$|\uparrow,0\rangle = \frac{\begin{pmatrix} \vdots\\1\\\vdots\\\vdots\\0\\\vdots \end{pmatrix}} \qquad \qquad \text{or} \qquad |\downarrow,0\rangle = \begin{pmatrix} \vdots\\0\\\vdots\\\vdots\\1\\\vdots \end{pmatrix}$$



Source: Renato Portugal (2013): Quantum Walks and Search Algorithms

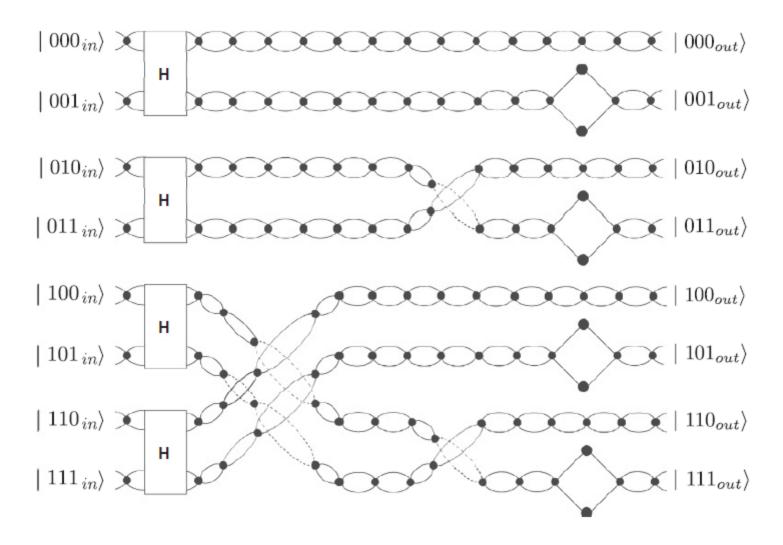
Initial State:





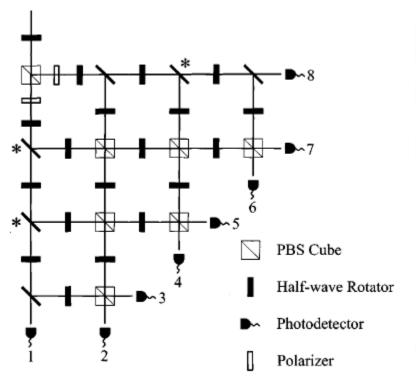
Source: Renato Portugal (2013): Quantum Walks and Search Algorithms

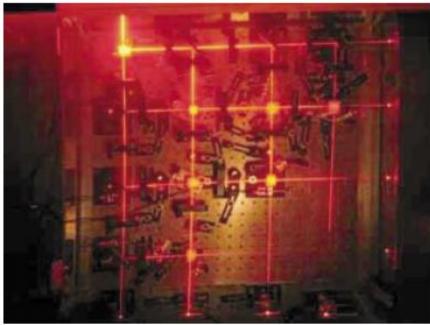
Universal for Quantum Computation



Source: Universal quantum computation using the discrete-time quantum walk, Lovett et. al.

Implementation in Linear Optics





Source: Experimental realization of a quantum quincunx by use of linear optical elements, Do et. al.

Entropy

We have a classical system whose macrostate is described by the probability measure

 $p = (p_1, p_2, \dots, p_k) \, .$

After measuring the system N times, we expect to see:

- 1st microstate: $p_1 N$ times
- 2nd microstate: p_2N times
- •
- kth microstate: $p_k N$ times

 $\frac{1}{N}\log\frac{N!}{(p_1N)!(p_2N)!\cdots(p_kN)!} \xrightarrow{N \to \infty} -\sum_{i=1}^k p_i\log p_i$ $H(X) = -\sum_{i=1}^k p_i\log p_i = \sum_{i=1}^k \eta(p_i)$

Entropy Rate

<u>Stochastic Process</u>: $X = (X_n)_{n=1}^{\infty}$

Entropy Rate:
$$H(\mathbf{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n)$$

= $\lim_{n \to \infty} \sum_{i_1, i_2, \dots, i_n}^k \eta(p_{i_1, i_2, \dots, i_n})$

Markov Process:
$$H(\mathbf{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, \dots, X_n)$$

= $\sum_{i=1}^k p_i \sum_{j=1}^k \eta(p_{j|i})$,

where $p = (p_1, p_2, ..., p_k)$ is an invariant measure.

Unbiased Random Walk:
$$H = \sum_{i=1}^{k} \frac{1}{k} \sum_{j=1}^{k} \eta(p_{j|i})$$

= log 2

SZ Quantum Dynamical Entropy

Dynamical System: (Schrödinger Picture)

 $(\Theta, \mathbf{T}, \rho)$ where $\Theta(\cdot) = U \cdot U^*$, $\rho \in S_1(H)$ and $\mathbf{T}(A) \cdot = \sum_{i \in A} P_i \cdot P_i$.

<u>Probabilities</u>: $p_{i_1,i_2,...,i_n} = tr(T(i_n) \circ \Theta \circ T(i_{n-1}) \circ \cdots \circ \Theta \circ T(i_1)\rho)$

<u>SZ Dynamical Entropy</u>: $h^{SZ}(\Theta, T, \rho) = \text{limsup}_{n \to \infty} \frac{1}{n} \sum_{i \in \Omega} \eta(p_{i_1, i_2, \dots, i_n})$

Theorem 1. (Androulakis, Wright) Let Θ = Hadamard walk on *N*-cycle H_c \otimes H_p = $\mathbb{C}^2 \otimes \mathbb{C}^N$, and T = $(P_n)_{n=1}^N$ with $P_n = \mathbb{1}_C \otimes |n\rangle \langle n|$, and $\rho = \mathbb{1}/2N$.

Then
$$h^{SZ}(\Theta, T, \rho) = \log 2$$

and $h^{SZ}(\Theta^2, T, \rho) = \frac{4}{3}\log 2.$ \longrightarrow $\frac{\text{Nonlinear in time}}{\text{we have}}$ In classical dynamical entropy we have

AOW Quantum Dynamical Entropy

<u>Dynamical System</u>: (Heisenberg Picture) $(\mathcal{A}, \Theta^*, \phi)$ where $\Theta^*(\cdot) = U^* \cdot U$ and $\phi \in S(\mathcal{A})$.

 $\underbrace{ \text{Quantum Markov Chains:}}_{\gamma = (P_i)_{i=1}^d, \ \mathbb{E}: M_d \otimes \mathcal{A} \to \mathcal{A} \text{ defined by } \mathbb{E}(\sum_{i,j=1}^d |i\rangle \langle j|A_{i,j}) = \Theta^*(\sum_{i=1}^d P_i A_{i,i} P_i)$

The Markov state $\phi_{\infty} \in S(M_d^{\otimes \mathbb{N}})$ is given by

$$\phi_{\infty}(a_{1}a_{2}\cdots a_{n}) = \phi(\mathbb{E}\left(a_{1}\otimes \mathbb{E}\left(a_{2}\otimes \cdots \mathbb{E}(a_{n-1}\otimes \mathbb{E}(a_{n}\otimes 1_{\mathcal{A}})\cdots)\right)\right))$$

Let
$$\rho_n \in M_d^{\otimes n}$$
 satisfy $\phi_{\infty}(a_1 a_2 \cdots a_n) = \operatorname{tr} (\rho_n \mathbb{E}(a_1 \otimes \cdots \mathbb{E}(a_n \otimes 1_{\mathcal{A}}) \cdots))$

<u>AOW Dynamical Entropy</u>: $h^{AOW}(\Theta^*, \gamma, \phi) = \text{limsup}_{n \to \infty} \frac{1}{n} S(\rho_n)$ where $S(\rho) = \text{tr}(\eta(\rho))$ is the von Neumann entropy.

SZ=AOW Dynamical Entropy

Theorem 2. (Androulakis, Wright)

Given a dynamical system (Θ, T, ρ) or $(\mathcal{A}, \Theta^*, \phi)$, $h^{SZ}(\Theta, T, \rho) = h^{AOW}(\Theta^*, \gamma, \phi)$ Proof. $p_{i_1,i_2,\dots,i_n} = \operatorname{tr}(\operatorname{T}(i_n) \circ \Theta \circ \operatorname{T}(i_{n-1}) \circ \dots \circ \Theta \circ \operatorname{T}(i_1)\rho)$ $= \operatorname{tr} \left(\operatorname{T}(i_{n-1}) \circ \Theta \circ \operatorname{T}(i_{n-2}) \circ \cdots \circ \Theta \circ \operatorname{T}(i_{1}) \rho \mathbb{E} \left(E_{i_{n}, i_{n}} \otimes 1_{\mathcal{A}} \right) \right)$ $= \operatorname{tr}\left(\mathrm{T}(i_1)\rho\mathbb{E}(E_{i_2,i_2}\otimes\mathbb{E}\left(\cdots\mathbb{E}(E_{i_n,i_n}\otimes 1_{\mathcal{A}})\right)\right)\right)$ $= \operatorname{tr}\left(\rho \mathbb{E}(E_{i_1,i_1} \otimes \mathbb{E}(E_{i_2,i_2} \otimes \mathbb{E}\left(\cdots \mathbb{E}(E_{i_n,i_n} \otimes 1_{\mathcal{A}})\right)\right)\right)$ = $\rho_n(i_1, i_2, \dots, i_n; i_1, i_2, \dots, i_n)$

Compressability of Data

OBJECTS = $S \xrightarrow{C}$ CODEWORDS $\subset A^+ = \bigcup_{\ell=0}^{\infty} \{0,1\}^n$

The <u>Source Code</u> C is uniquely decodable if its extension $C^+: S^+ \to A^+$

$$C^+(x_1x_2\cdots x_n) = C(x_1)C(x_2)\cdots C(x_n)$$

is one-to-one, for all n.

Kraft-McMillan Inequality.

Any uniquely decodable code with codeword lengths $\ell_1, \ell_2, \dots, \ell_n$ must satisfy the inequality $\sum_{i=1}^n 2^{-\ell_i} \leq 1$. Conversely, given lengths that satisfy the above inequality there exists a uniquely decodable code with those lengths.

Optimal Lossless Codes

Shannon's Noiseless Coding Theorem.

Given a random variable *X*, the optimal source code *C* satisfies the inequality $H(X) \le L(C) < H(X) + 1$, where $L(C) = \mathbb{E}[\ell(x)] = \sum_{x \in S} p(x)\ell(x)$ is the expected length of *C*.

Corollary.

Given a stochastic process $X = (X_n)_{n=1}^{\infty}$, the optimal source code C_n for the strings of length n satisfies the inequality

$$H(X_1, X_2, \dots, X_n) \le L(C_n) < H(X_1, X_2, \dots, X_n) + 1.$$

Therefore average expected length per symbol $L_n^* = \frac{1}{n}L(C_n)$ is given by

$$H(\mathbf{X}) = \lim_{n \to \infty} \frac{1}{n} H(X_1, X_2, ..., X_n) = \lim_{n \to \infty} L_n^* =: L^*.$$

In particular, if **X** has i.i.d. copies of a random variable X, then

$$H(X) = L^* = H(X).$$

Compressing Quantum Data

 $\mathsf{OBJECTS} = \mathcal{S} \subset H_{\mathcal{S}} \xrightarrow{U} \mathsf{CODEWORDS} \subset H_{\mathcal{A}}^{\bigoplus} = \bigoplus_{\ell=0}^{\infty} H_{\mathcal{A}}^{\bigotimes n}$

where $S = \{p_n, |s_n\rangle\}_{n=1}^N$ is an ensemble of states in $H_S = \text{span}\{|s_n\rangle\} = \mathbb{C}^d$ and $H_{\mathcal{A}} = \mathbb{C}^2 = \text{span}\{|0\rangle, |1\rangle\}$.

The <u>Quantum Source Code</u> U is uniquely decodable if its extension $U^+: H^{\oplus}_{\mathcal{S}} \to H^{\oplus}_{\mathcal{A}}$

$$U^+(x_1x_2\cdots x_n) = U(x_1)U(x_2)\cdots U(x_n)$$

is a linear isometry, for all n.

We define the length observable $\Lambda \in B(H_{\mathcal{A}}^{\bigoplus})$ by

$$\Lambda \coloneqq \sum_{\ell=0}^{\ell_{\max}} \ell \Pi_{\ell}$$

where Π_{ℓ} is the orthogonal projection onto the subspace $H_{\mathcal{A}}^{\otimes \ell} \subset H_{\mathcal{A}}^{\oplus}$. The quantum codeword length of $|\omega\rangle \equiv U |s\rangle$ for each $|s\rangle \in H_{\mathcal{S}}$ is given by

$$\ell(|\omega\rangle) \equiv \langle \omega | \Lambda | \omega \rangle .$$

Quantum from Classical

Let $C: S \to A^+$ be a classical uniquely decodable code with $|S| = \dim(H_S)$. Then for any orthonormal basis $\{|e_i\rangle\}_{i=1}^d$ of H_S ,

$$U = \sum_{i=1}^{a} |C(x_i)\rangle \langle e_i|$$

is uniquely decodable. Furthermore, the quantum codeword lengths for $|\omega\rangle \equiv U |s\rangle$ are given by $\ell(|\omega\rangle) \equiv \langle \omega |\Lambda| \omega \rangle = \sum_{i=1}^{d} |\langle e_i |s \rangle|^2 \ell_i.$

Theorem 3. (Quantum Kraft-McMillan Inequality)

Any uniquely decodable code U must satisfy the inequality

$$\operatorname{tr}(U^{\dagger}2^{-\Lambda}U) \le 1.$$

Conversely, if $U: H_S \to H_A^{\bigoplus}$ is a linear isometry with length eigenstates satisfying the above inequality, then there exists a uniquely decodable quantum code (of the above form) with the same number of length ℓ eigenstates, for each $\ell \in \mathbb{N}$.

Optimal Quantum Lossless Codes

Let
$$\mathcal{S} = \{p_n, |s_n\rangle\}_{n=1}^N$$
 and $\rho = \sum_{n=1}^N p_n |s_n\rangle \langle s_n|$.

Suppose ho has spectral decomposition,

$$ho = \sum_{i=1}^{a}
ho_i |
ho_i
angle \langle
ho_i |.$$

Theorem 4. (Bellomo, Bosyk, Holik, Zozor 2017)

The optimal classical-quantum source code is given by

$$U = \sum_{i=1}^{a} |c(i)\rangle \langle \rho_i|$$

where $\{c(i)\}\$ is the classical Huffman code for the probabilities $\{\rho_i\}$.

Optimal Quantum Lossless Codes

<u>Theorem 5</u>. (Bellomo, Bosyk, Holik, Zozor 2017)

The average length of the optimal quantum source code satisfies the inequalities

$$S(\rho) \leq \ell(\Gamma(\rho)) < S(\rho) + 1,$$

$$\Gamma(\cdot) = U \cdot U^{\dagger} \text{ and } \ell(\Gamma(\rho)) = \operatorname{tr}(\Gamma(\rho)\Lambda).$$

Corollary.

Т

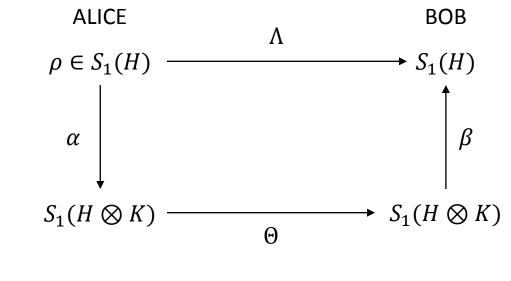
The average length of the optimal quantum source code for the i.i.d. ensemble $\mathcal{S}^{\otimes n}$ satisfies the inequalities

$$nS(\rho) = S(\rho^{\otimes n}) \leq \ell\left(\Gamma_{n}(\rho^{\otimes n})\right) < S(\rho^{\otimes n}) + 1 = nS(\rho) + 1.$$

Therefore $\lim_{n \to \infty} \frac{1}{n} \ell\left(\Gamma_{n}(\rho^{\otimes n})\right) = S(\rho) = h^{AOW}(\Theta^{*}, \gamma, \phi)$, where $\gamma = (|\rho_{i}\rangle\langle\rho_{i}|)_{i=1}^{d}$,
 Θ^{*} is the Bernoulli shift on $M_{d}^{\otimes \mathbb{N}}$ and $\phi(a_{1}a_{2}\cdots a_{n}) = \operatorname{tr}\left(\rho^{\otimes n}\mathbb{E}(a_{1}\otimes \cdots \mathbb{E}(a_{n}\otimes 1_{\mathcal{A}})\cdots)\right)$.

Open Question. Can the above result relating the average length per symbol be extended to include a stochastic ensemble $\mathcal{S}^k = \{p_{n_1,\dots,n_k}, |s_1 s_2 \cdots s_k\rangle\}_{n_1,\dots,n_k=1}^N$?

Optical Communication Process



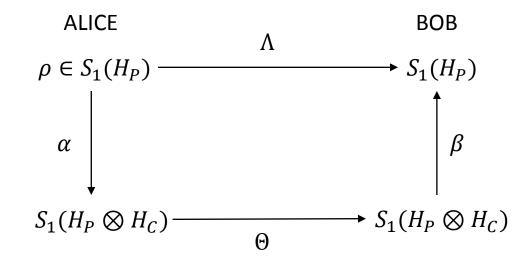
Where $\alpha(\rho) = \rho \otimes \nu$

for some noise ν coming from the noisy channel and

$$\beta(\varphi) = \operatorname{tr}_K(\varphi).$$

Optical Communication Process

Example.



Where $\Theta(\cdot) = U \cdot U^{\dagger}$ is the Hadamard walk on the N-cycle given by the unitary $U = S(1_P \otimes h), \alpha(\rho) = \rho \otimes \nu$ where $h\nu = \nu$, and $\beta(\varphi) = \operatorname{tr}_{H_C}(\varphi)$. Letting $\rho = 1_P/N$, $T_1 = (P_n)_{n=1}^N$ where $P_n = |n\rangle\langle n|$, and $T_2 = (Q_n)_{n=1}^N$ where $Q_n = |n\rangle\langle n| \otimes 1_C$, we find that $h^{SZ}(\Lambda, T_1, \rho) \neq h^{SZ}(\Theta, T_2, \rho \otimes \nu)$. Thank you!